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Motivation:

Let K/k be separable where Γ = Gal(K̃/k) and Γ′ =

Gal(K̃/K) where K̃ is the Galois closure of K/k.

Any Hopf-Galois structure on K/k corresponds to a reg-

ular subgroup N ≤ B = Perm(X) where X is either Γ

or Γ/Γ′ where λ(Γ) ≤ NormB(N).
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Preliminaries:

We begin with some definitions.

Definition: If X is a finite set, let B = Perm(X), a

subgroup N ≤ B is regular if any two of the following

conditions hold:

• N acts transitively on X

• N acts without fixed points, i.e. ν(x) = x only if

ν = eN

• |N | = |X|

2



The canonical example(s) are λ(Γ) and ρ(Γ), the left

and right regular representations of Γ in Perm(Γ).



Definition: A subgroup of B which acts without fixed

points is semi-regular.

Thus any subgroup of a regular subgroup is semi-regular.

As such, a semi-regular subgroup of order |X| is there-

fore automatically regular, and any semi-regular sub-

group can have at most |X| elements.

We also observe that any subgroup of B which is tran-

sitive must have at least |X| elements.
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It’s relatively easy to show that a semi-regular subgroup

K ≤ B is a subgroup of a regular subgroup. (Basically

one can extend K by a group of complementary order

which remains semi-regular and is therefore regular.)

Does M being transitive imply that it contains a regular

subgroup?
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As it turns out, the answer is no.

(ref. TRANSITIVE PERMUTATION GROUPS WITH-

OUT SEMIREGULAR SUBGROUPS (2002) by Peter

Cameron et. al., Journal of the London Mathematical

Society)
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Regularity imposes a number of restrictions on the cycle

structure of elements.

Lemma:

If x ∈ X and ν ∈ N then |Orb〈ν〉(x)| = |ν|

What this means is that if ν ∈ N where |ν| = r and

n = rs = |X| = |N | then ν is a product of s disjoint

r-cycles.

Why? Since ν ∈ N then ν has no fixed points, and

neither does any non-trivial power of ν.

So if ν contained a cycle of length t < r = |ν| then νt

would have fixed points where νt 6= eN .

6



Normalizers

The condition λ(Γ) ≤ NormB(N) prompts us to con-

sider the structure of the normalizer of a regular per-

mutation group.

For B = Perm(Γ) and N = λ(Γ), it is a standard fact

(for example in Marshall Hall’s book) that

NormB(λ(Γ)) = ρ(Γ)Aut(Γ)

where ρ(γ)(γ′) = γ′γ−1 is the right regular representa-

tion and Aut(Γ) = {h ∈ NormB(λ(Γ)) | h(eΓ) = eΓ}.

This is canonically isomorphic to Γ⋊Aut(G) and actually

the original definition of Hol(Γ) the holomorph of Γ.

7



An interesting ’extremal’ example is the case where Γ is

a complete group, for then Hol(Γ) = λ(Γ)ρ(Γ) ∼= Γ×Γ.

This seems incorrect since there does not seem to be

an Aut(Γ) factor.

However, completeness includes the condition that Aut(Γ) =

Inn(Γ) which can be represented as {λ(g)ρ(g) | g ∈ Γ}

so that ρ(Γ)Aut(Γ) = λ(Γ)ρ(Γ).

Since the left and right regular representations of Γ

always commute then Hol(G) is a direct product.
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The significance of ρ(Γ) in these examples is that ρ(Γ) =

CentB(λ(G)).

Definition: For N a regular subgroup of B, the opposite

group is Nopp = CentB(N).

Note: In some old papers this is called the conjoint.

(The opposite has a definition given in terms of the

elements of N but it coincides with CentB(N) anyway.)

So for N regular one has

NormB(N) = NoppAut(N)

where Aut(N) = {h ∈ NormB(N) | h(eΓ) = eΓ}.
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In fact, there is nothing terribly special about the con-

dition h(eΓ) = eΓ.

We may observe that for N ≤ B regular that

NormB(N) = NoppA(γ,N)

where A(γ,N) = {h ∈ NormB(N) | h(γ) = γ} for any

γ ∈ Γ.

Indeed, all the A(γ,N) are conjugate, specifically πA(γ,N)π
−1 =

A(π(γ),N) for any π ∈ B.
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We observe the following symmetries of ( )opp:

• N ∩Nopp = Z(N)

• If N is semi-regular then Nopp is transitive.

• If N is transitive then Nopp is semi-regular.

• N is regular iff Nopp is regular

• (Nopp)opp = N if N is (semi-)regular

• NormB(N) = NormB(Nopp)
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The last statement above is a consequence of the fol-

lowing:

Lemma:

Given a regular subgroup N of B, and its normalizer

NormB(N). If M is a normal regular subgroup of NormB(N)

then NormB(N) ≤ NormB(M).

If |Aut(M)| = |Aut(N)| then NormB(N) = NormB(M).
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This leads to a different kind of symmetry between

regular subgroups N normalized by λ(Γ). In particular,

in this theorem N and M need not be isomorphic as

groups in order to have isomorphic holomorphs.
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A classic example of this phenomenon is the relation-

ship between the dihedral groups D2n and quaternionic

(dicyclic) groups Qn of order 4n for n ≥ 3:

D2n = {x, t| x2n = 1, t2 = 1, xt = tx−1}

Qn = {x, t| x2n = 1, t2 = xn, xt = tx−1}

and viewed as subgroups of Perm({xi, txi}) they have a

common automorphism group:

Aut(D2n) = {φ(i,j) | i ∈ Z2n, j ∈ U(Z2n)}
∼= Z2n ⋊ U(Z2n)

∼= Hol(Z2n)

where φ(i,j)(t
axb) = tiaxia+jb
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It was known by Burnside that in fact Hol(D2n)
∼=

Hol(Qn) and by viewing both as permutations on {xi, txi}

we have that Hol(D2n) = Hol(Qn) since one can show

that:

ρQ(x
b)φ(i,j) = ρD(xb)φ(i,j)

ρQ(tx
b)φ(i,j) = ρD(txb+n)φ(i+n,j)

The upshot of this is that if λ(Γ) normalizes a given

copy of D2n then it normalizes its opposite as seen

above, and it also normalizes a copy of Qn and its op-

posite.
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Other examples:

n = 40

{D20, Q10}

{C20 ⋊ C2, C4 ×D5}

n = 88

{D44, Q22}

{C44 ⋊ C2, C4 ×D11}

n = 156

{D78, Q39}

{C3 ×Q13, C6 ×D13}

{C26 ×D3, C13 ×Q3}

{C2 × ((C13 ⋊ C3) ⋊ C2), (C13 ⋊ C4) ⋊ C3}
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Decompositions

When Γ = Cr × Cs where gcd(r, s) = 1 then Aut(Γ) ∼=

Aut(Cr)×Aut(Cs) and concordantly

Hol(Γ) ∼= Hol(Cr)×Hol(Cs)

Similarly if Γ nilpotent, expressed as a product of its

Sylow p-subgroups, then its holomorph is a direct prod-

uct of the holomorphs of each of these (characteristic)

subgroups.
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Other decompositions are possible.

If G is centerless then Fitting (using the Krull-Remak-

Schmidt theorem) showed that G is decomposable as a

product of distinct indecomposable normal subgroups

(up to order)

G ∼= (G11 × · · · ×G1n1
)× · · · × (Gs1 × · · · ×Gsns)

where the Gi1, . . . Gini
are all isomorphic, and Gij 6

∼= Gkl

unless i = k. Furthermore

Aut(G) ∼= (Aut(Gi1) ≀ Sn1)× · · · × (Aut(Gs1) ≀ Sns)

whence

Hol(G) ∼= (Hol(Gi1) ≀ Sn1)× · · · × (Hol(Gs1) ≀ Sns)
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Bear in mind that in these examples the component

groups are normal, semi-regular subgroups. So for a

given N ≤ B regular with K ⊳ N then obviously K ≤

NormB(N).

In fact, K is characteristic in N if and only if K ⊳

NormB(N).

To see this, realize that what Hol(N) represents is the

largest subgroup of B wherein automorphisms of N are

realized by conjugation.

(i.e. The distinction between Inner and Outer auto-

morphisms goes away.)
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Semi-Regular Subgroups and Wreath Products

The wreath products in the automorphisms (and holo-

morphs) seen earlier can be understood by looking at

the centralizers/normalizers of semi-regular subgroups.

We start with a classic example due to Burnside.

Let n = rs and consider the semi-regular cyclic sub-

group K = 〈(1,2, . . . , s) · · · ((r − 1)s+1, . . . , rs)〉 ≤ Sn.

We have

CentSn(K) ∼= Cs ≀ Sr

= (Cs × · · · × Cs) ⋊ Sr

where Sr acts by coordinate shift on Cr
s .
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and where each copy of Cs corresponds to a cycle

((j − 1)s+1, . . . , js)

in the generator of K and for (j−1)s+k ∈ {1, . . . , n} one

applies an element σ ∈ Sr to send it to (j′−1)s+k where

it is then acted on by a power of ((j′−1)s+1, . . . , j′s).
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This wreath product is a subgroup of a larger one within

Sn, namely the subgroup of Sn consisting of those per-

mutations which preserve the supports (blocks)

Πj = {(j − 1)s+1, . . . , js}

that is

(Perm(Π1)× · · · × Perm(Πr)) ⋊ Sr
∼= Ss ≀ Sr
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For this same K ≤ Sn the normalizer is a ’twisted’

wreath product:

NormSn(K) ∼= Cr
s ⋊ (∆× Sr)

where ∆ is isomorphic to Aut(Cs) acting by exponen-

tiating each s-cycle to the same unit, and Sr still acts

by coordinate shift.

That is

(j − 1)s+ k 7→ ((j′ − 1)s+1, . . . , j′r))u((j′ − 1)s+ k)

for u ∈ Us.
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For K ≤ B a general semi-regular subgroup (not neces-

sarily cyclic) one has

CentB(K) ∼= K ≀ Sr

NormB(K) ∼= Kr
⋊ (Aut(K)× Sr)

where r = n/|K| and the analogues of the Πi are the

orbits under the action of K.

As such, if K⊳N for some regular N then N ≤ NormB(K)

where the structure of this normalizer is as given above.

Moreover, K|Πi
is a regular subgroup of Perm(Πi).
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On a somewhat related note, the appearance of wreath

products in this discussion can be looked at as a con-

sequence of the following.

Universal Embedding Theorem [Kaloujnine-Krasner]

Given an exact sequence of groups

1 → K → N → Q → 1

expressing N as an extension of K by Q (split or not)

then one may find an isomorphic copy of N embedded

in K ≀Q.
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Now, if we view N as embedded as a regular subgroup

of B = Perm(X) with semi-regular subgroup K then

CentB(K) ∼= K ≀ Sm where m = [N : K] = |Q|.

And thus, this Sm will contain a reqular subgroup iso-

morphic to Q.

But this K ≀ Q centralizes K so any extension of K by

Q contained herein would have to centralize K.

Well, if K ≤ N then Nopp ≤ CentB(K) and, of course

N ∼= Nopp.
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An interesting curio appears when looking again at the

dihedral groups Dn.

Recall that

Dn = {x, t| xn = 1, t2 = 1, xt = tx−1}

and if Cn = 〈x〉 then λ(Cn) ≤ λ(Dn) is a semi-regular

subgroup.

Since λ(x) is a product of two disjoint n-cycles then by

the above result:

NormB(λ(Cn))
∼= (Cn × Cn) ⋊ (Un × S2)

where Un = (Zn)∗
∼= Aut(Cn) so that, in particular

|NormB(λ(Cn))| = 2n2φ(n)
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But now, since λ(Cn) is characteristic in λ(Dn) then

NormB(λ(Dn)) ≤ NormB(λ(Cn)).

And since

NormB(λ(Dn)) = Hol(Dn)
∼= Dn ⋊Hol(Cn)
∼= Dn ⋊ (Cn ⋊ Un)

then |NormB(Dn)| = 2n·n·φ(n) which is exactly |NormB(λ(Cn))|
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As such, we have

NormB(λ(Cn)) = NormB(λ(Dn))

so that any question about groups normalizing λ(Dn)

can be examined by looking at whether they normalize

λ(Cn).
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Thank you!
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