Regular and Semi-regular Permutation Groups and Their Centralizers and Normalizers

Timothy Kohl Boston University

May 24, 2016

Motivation:

Let K/k be separable where $\Gamma = Gal(\tilde{K}/k)$ and $\Gamma' = Gal(\tilde{K}/K)$ where \tilde{K} is the Galois closure of K/k.

Any Hopf-Galois structure on K/k corresponds to a regular subgroup $N \leq B = Perm(X)$ where X is either Γ or Γ/Γ' where $\lambda(\Gamma) \leq Norm_B(N)$.

Preliminaries:

We begin with some definitions.

Definition: If X is a finite set, let B = Perm(X), a subgroup $N \le B$ is *regular* if any two of the following conditions hold:

- N acts transitively on X
- N acts without fixed points, i.e. $\nu(x) = x$ only if $\nu = e_N$

•
$$|N| = |X|$$

The canonical example(s) are $\lambda(\Gamma)$ and $\rho(\Gamma)$, the left and right regular representations of Γ in $Perm(\Gamma)$. Definition: A subgroup of *B* which acts without fixed points is *semi-regular*.

Thus any subgroup of a regular subgroup is semi-regular.

As such, a semi-regular subgroup of order |X| is therefore automatically regular, and any semi-regular subgroup can have at most |X| elements.

We also observe that any subgroup of B which is transitive must have *at least* |X| elements. It's relatively easy to show that a semi-regular subgroup $K \leq B$ is a subgroup of a regular subgroup. (Basically one can extend K by a group of complementary order which remains semi-regular and is therefore regular.)

Does M being transitive imply that it contains a regular subgroup?

As it turns out, the answer is no.

(ref. TRANSITIVE PERMUTATION GROUPS WITH-OUT SEMIREGULAR SUBGROUPS (2002) by Peter Cameron et. al., Journal of the London Mathematical Society) Regularity imposes a number of restrictions on the cycle structure of elements.

Lemma:

If $x \in X$ and $\nu \in N$ then $|Orb_{\langle \nu \rangle}(x)| = |\nu|$

What this means is that if $\nu \in N$ where $|\nu| = r$ and n = rs = |X| = |N| then ν is a product of s disjoint r-cycles.

Why? Since $\nu \in N$ then ν has no fixed points, and neither does any non-trivial power of ν .

So if ν contained a cycle of length $t < r = |\nu|$ then ν^t would have fixed points where $\nu^t \neq e_N$.

Normalizers

The condition $\lambda(\Gamma) \leq Norm_B(N)$ prompts us to consider the structure of the normalizer of a regular permutation group.

For $B = Perm(\Gamma)$ and $N = \lambda(\Gamma)$, it is a standard fact (for example in Marshall Hall's book) that

$$Norm_B(\lambda(\Gamma)) = \rho(\Gamma)Aut(\Gamma)$$

where $\rho(\gamma)(\gamma') = \gamma'\gamma^{-1}$ is the right regular representation and $Aut(\Gamma) = \{h \in Norm_B(\lambda(\Gamma)) \mid h(e_{\Gamma}) = e_{\Gamma}\}.$

This is canonically isomorphic to $\Gamma \rtimes Aut(G)$ and actually the original definition of $Hol(\Gamma)$ the holomorph of Γ .

An interesting 'extremal' example is the case where Γ is a complete group, for then $Hol(\Gamma) = \lambda(\Gamma)\rho(\Gamma) \cong \Gamma \times \Gamma$.

This seems incorrect since there does not seem to be an $Aut(\Gamma)$ factor.

However, completeness includes the condition that $Aut(\Gamma) = Inn(\Gamma)$ which can be represented as $\{\lambda(g)\rho(g) \mid g \in \Gamma\}$ so that $\rho(\Gamma)Aut(\Gamma) = \lambda(\Gamma)\rho(\Gamma)$.

Since the left and right regular representations of Γ always commute then Hol(G) is a direct product.

The significance of $\rho(\Gamma)$ in these examples is that $\rho(\Gamma) = Cent_B(\lambda(G))$.

Definition: For N a regular subgroup of B, the opposite group is $N^{opp} = Cent_B(N)$.

Note: In some old papers this is called the *conjoint*. (The opposite has a definition given in terms of the elements of N but it coincides with $Cent_B(N)$ anyway.)

So for N regular one has

 $Norm_B(N) = N^{opp}Aut(N)$ where $Aut(N) = \{h \in Norm_B(N) \mid h(e_{\Gamma}) = e_{\Gamma}\}.$ In fact, there is nothing terribly special about the condition $h(e_{\Gamma}) = e_{\Gamma}$.

We may observe that for $N \leq B$ regular that

$$Norm_B(N) = N^{opp} A_{(\gamma,N)}$$

where $A_{(\gamma,N)} = \{h \in Norm_B(N) \mid h(\gamma) = \gamma\}$ for any $\gamma \in \Gamma$.

Indeed, all the $A_{(\gamma,N)}$ are conjugate, specifically $\pi A_{(\gamma,N)}\pi^{-1} = A_{(\pi(\gamma),N)}$ for any $\pi \in B$.

We observe the following symmetries of ($)^{opp}$:

•
$$N \cap N^{opp} = Z(N)$$

- If N is semi-regular then N^{opp} is transitive.
- If N is transitive then N^{opp} is semi-regular.
- N is regular iff N^{opp} is regular
- $(N^{opp})^{opp} = N$ if N is (semi-)regular
- $Norm_B(N) = Norm_B(N^{opp})$

The last statement above is a consequence of the following:

Lemma:

Given a regular subgroup N of B, and its normalizer $Norm_B(N)$. If M is a normal regular subgroup of $Norm_B(N)$ then $Norm_B(N) \leq Norm_B(M)$.

If |Aut(M)| = |Aut(N)| then $Norm_B(N) = Norm_B(M)$.

This leads to a different kind of symmetry between regular subgroups N normalized by $\lambda(\Gamma)$. In particular, in this theorem N and M need not be isomorphic as groups in order to have isomorphic holomorphs.

A classic example of this phenomenon is the relationship between the dihedral groups D_{2n} and quaternionic (dicyclic) groups Q_n of order 4n for $n \ge 3$:

$$D_{2n} = \{x, t \mid x^{2n} = 1, t^2 = 1, xt = tx^{-1}\}$$
$$Q_n = \{x, t \mid x^{2n} = 1, t^2 = x^n, xt = tx^{-1}\}$$

and viewed as subgroups of $Perm(\{x^i, tx^i\})$ they have a common automorphism group:

$$Aut(D_{2n}) = \{ \phi_{(i,j)} \mid i \in \mathbb{Z}_{2n}, j \in U(\mathbb{Z}_{2n}) \}$$
$$\cong \mathbb{Z}_{2n} \rtimes U(\mathbb{Z}_{2n}) \cong Hol(\mathbb{Z}_{2n})$$
where $\phi_{(i,j)}(t^a x^b) = t^{ia} x^{ia+jb}$

It was known by Burnside that in fact $Hol(D_{2n}) \cong Hol(Q_n)$ and by viewing both as permutations on $\{x^i, tx^i\}$ we have that $Hol(D_{2n}) = Hol(Q_n)$ since one can show that:

$$\rho_Q(x^b)\phi_{(i,j)} = \rho_D(x^b)\phi_{(i,j)}$$
$$\rho_Q(tx^b)\phi_{(i,j)} = \rho_D(tx^{b+n})\phi_{(i+n,j)}$$

The upshot of this is that if $\lambda(\Gamma)$ normalizes a given copy of D_{2n} then it normalizes its opposite as seen above, and it also normalizes a copy of Q_n and *its* opposite. Other examples:

$$n = 40$$

$$\{D_{20}, Q_{10}\}$$

$$\{C_{20} \rtimes C_2, C_4 \times D_5\}$$

$$n = 88$$

$$\{D_{44}, Q_{22}\}$$

$$\{C_{44} \rtimes C_2, C_4 \times D_{11}\}$$

$$n = 156$$

$$\{D_{78}, Q_{39}\}$$

$$\{C_3 \times Q_{13}, C_6 \times D_{13}\}$$

$$\{C_{26} \times D_3, C_{13} \times Q_3\}$$

$$\{C_2 \times ((C_{13} \rtimes C_3) \rtimes C_2), (C_{13} \rtimes C_4) \rtimes C_3\}$$

Decompositions

When $\Gamma = C_r \times C_s$ where gcd(r,s) = 1 then $Aut(\Gamma) \cong Aut(C_r) \times Aut(C_s)$ and concordantly

 $Hol(\Gamma) \cong Hol(C_r) \times Hol(C_s)$

Similarly if Γ nilpotent, expressed as a product of its Sylow *p*-subgroups, then its holomorph is a direct product of the holomorphs of each of these (characteristic) subgroups. Other decompositions are possible.

If G is centerless then Fitting (using the Krull-Remak-Schmidt theorem) showed that G is decomposable as a product of distinct indecomposable normal subgroups (up to order)

$$G \cong (G_{11} \times \cdots \times G_{1n_1}) \times \cdots \times (G_{s1} \times \cdots \times G_{sn_s})$$

where the $G_{i1}, \ldots G_{in_i}$ are all isomorphic, and $G_{ij} \not\cong G_{kl}$ unless i = k. Furthermore

$$Aut(G) \cong (Aut(G_{i1}) \wr S_{n_1}) \times \cdots \times (Aut(G_{s1}) \wr S_{n_s})$$

whence

$$Hol(G) \cong (Hol(G_{i1}) \wr S_{n_1}) \times \cdots \times (Hol(G_{s1}) \wr S_{n_s})$$

Bear in mind that in these examples the component groups are normal, semi-regular subgroups. So for a given $N \leq B$ regular with $K \triangleleft N$ then obviously $K \leq Norm_B(N)$.

In fact, K is characteristic in N if and only if $K \triangleleft Norm_B(N)$.

To see this, realize that what Hol(N) represents is the largest subgroup of B wherein automorphisms of N are realized by conjugation.

(i.e. The distinction between Inner and Outer automorphisms goes away.)

Semi-Regular Subgroups and Wreath Products

The wreath products in the automorphisms (and holomorphs) seen earlier can be understood by looking at the centralizers/normalizers of semi-regular subgroups.

We start with a classic example due to Burnside.

Let n = rs and consider the semi-regular cyclic subgroup $K = \langle (1, 2, ..., s) \cdots ((r-1)s + 1, ..., rs) \rangle \leq S_n$.

We have

$$Cent_{S_n}(K) \cong C_s \wr S_r$$
$$= (C_s \times \dots \times C_s) \rtimes S_r$$

where S_r acts by coordinate shift on C_s^r .

and where each copy of C_s corresponds to a cycle

$$((j-1)s+1,\ldots,js)$$

in the generator of K and for $(j-1)s+k \in \{1, ..., n\}$ one applies an element $\sigma \in S_r$ to send it to (j'-1)s+k where it is then acted on by a power of ((j'-1)s+1, ..., j's). This wreath product is a subgroup of a larger one within S_n , namely the subgroup of S_n consisting of those permutations which preserve the supports (blocks)

$$\Pi_j = \{(j-1)s+1,\ldots,js\}$$

that is

$$(Perm(\Pi_1) \times \cdots \times Perm(\Pi_r)) \rtimes S_r \cong S_s \wr S_r$$

For this same $K \leq S_n$ the normalizer is a 'twisted' wreath product:

$$Norm_{S_n}(K) \cong C_s^r \rtimes (\Delta \times S_r)$$

where Δ is isomorphic to $Aut(C_s)$ acting by exponentiating each *s*-cycle to the same unit, and S_r still acts by coordinate shift.

That is

$$(j-1)s + k \mapsto ((j'-1)s + 1, \dots, j'r))^u ((j'-1)s + k)$$

for $u \in U_s$.

For $K \leq B$ a general semi-regular subgroup (not necessarily cyclic) one has

$$Cent_B(K) \cong K \wr S_r$$
$$Norm_B(K) \cong K^r \rtimes (Aut(K) \times S_r)$$

where r = n/|K| and the analogues of the Π_i are the orbits under the action of K.

As such, if $K \triangleleft N$ for some regular N then $N \leq Norm_B(K)$ where the structure of this normalizer is as given above.

Moreover, $K|_{\Pi_i}$ is a regular subgroup of $Perm(\Pi_i)$.

On a somewhat related note, the appearance of wreath products in this discussion can be looked at as a consequence of the following.

Universal Embedding Theorem [Kaloujnine-Krasner]

Given an exact sequence of groups

$$\mathbf{1} \to K \to N \to Q \to \mathbf{1}$$

expressing N as an extension of K by Q (split or not) then one may find an isomorphic copy of N embedded in $K \wr Q$.

Now, if we view N as embedded as a regular subgroup of B = Perm(X) with semi-regular subgroup K then $Cent_B(K) \cong K \wr S_m$ where m = [N : K] = |Q|.

And thus, this S_m will contain a regular subgroup isomorphic to Q.

But this $K \wr Q$ centralizes K so any extension of K by Q contained herein would have to centralize K.

Well, if $K \leq N$ then $N^{opp} \leq Cent_B(K)$ and, of course $N \cong N^{opp}$.

An interesting curio appears when looking again at the dihedral groups D_n .

Recall that

$$D_n = \{x, t | x^n = 1, t^2 = 1, xt = tx^{-1}\}$$

and if $C_n = \langle x \rangle$ then $\lambda(C_n) \leq \lambda(D_n)$ is a semi-regular subgroup.

Since $\lambda(x)$ is a product of two disjoint *n*-cycles then by the above result:

$$Norm_B(\lambda(C_n)) \cong (C_n \times C_n) \rtimes (U_n \times S_2)$$

where $U_n = (\mathbb{Z}_n)^* \cong Aut(C_n)$ so that, in particular $|Norm_B(\lambda(C_n))| = 2n^2 \phi(n)$

But now, since $\lambda(C_n)$ is characteristic in $\lambda(D_n)$ then $Norm_B(\lambda(D_n)) \leq Norm_B(\lambda(C_n))$.

And since

$$Norm_B(\lambda(D_n)) = Hol(D_n)$$
$$\cong D_n \rtimes Hol(C_n)$$
$$\cong D_n \rtimes (C_n \rtimes U_n)$$

then $|Norm_B(D_n)| = 2n \cdot n \cdot \phi(n)$ which is exactly $|Norm_B(\lambda(C_n))|$

As such, we have

$$Norm_B(\lambda(C_n)) = Norm_B(\lambda(D_n))$$

so that any question about groups normalizing $\lambda(D_n)$ can be examined by looking at whether they normalize $\lambda(C_n)$.

Thank you!