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Motivation:

Let K/k be separable where ' = Gal(K/k) and " =
Gal(K/K) where K is the Galois closure of K/k.

Any Hopf-Galois structure on K/k corresponds to a reg-
ular subgroup N < B = Perm(X) where X is either I

or /I where \(I"') < Normpg(N).



Preliminaries:

We begin with some definitions.

Definition: If X is a finite set, let B = Perm(X), a
subgroup N < B is regular if any two of the following
conditions hold:

e /N acts transitively on X

e N acts without fixed points, i.e. v(x) = z only if

vV =eN

o [N|=|X]|



The canonical example(s) are X(I") and p(IM), the left
and right regular representations of I in Perm(I").



Definition: A subgroup of B which acts without fixed
points is semi-regular.

Thus any subgroup of a regular subgroup is semi-regular.
As such, a semi-regular subgroup of order |X| is there-
fore automatically regular, and any semi-regular sub-

group can have at most | X| elements.

We also observe that any subgroup of B which is tran-
sitive must have at least | X| elements.



It's relatively easy to show that a semi-regular subgroup
K < B is a subgroup of a regular subgroup. (Basically
one can extend K by a group of complementary order
which remains semi-regular and is therefore regular.)

Does M being transitive imply that it contains a regular
subgroup?



AsS it turns out, the answer is no.

(ref. TRANSITIVE PERMUTATION GROUPS WITH-
OUT SEMIREGULAR SUBGROUPS (2002) by Peter

Cameron et. al., Journal of the London Mathematical
Society)



Regularity imposes a number of restrictions on the cycle
structure of elements.

Lemma:

If z € X and v € N then [Orb,,(z)| = [v|

What this means is that if v € N where |v| = r and
n = rs = |X| = |N| then v is a product of s disjoint

r-cycles.

Why? Since v € N then v has no fixed points, and
neither does any non-trivial power of v.

So if v contained a cycle of length t < r = |v| then !
would have fixed points where vt % ey.



Normalizers

The condition AX(I') < Normpg(N) prompts us to con-
sider the structure of the normalizer of a regular per-
mutation group.

For B = Perm(I"') and N = X\(I"), it is a standard fact
(for example in Marshall Hall's book) that

Normp(A(IM)) = p(I") Aut(I")

where p(7)(y) = ~/~v~1 is the right regular representa-
tion and Aut(l") = {h € Normpg(A([")) | h(er) = er}.

This is canonically isomorphic to '« Aut(G) and actually
the original definition of Hol(I") the holomorph of I.
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An interesting 'extremal’ example is the case where I is
a complete group, for then Hol(IN) = AX(Mp(MH) =T xT.

This seems incorrect since there does not seem to be
an Aut(l") factor.

However, completeness includes the condition that Aut(lN) =
Inn(l") which can be represented as {A(g)p(g) | g €T}
so that p(M)Aut(l") = X(IM)p(M).

Since the left and right regular representations of [
always commute then Hol(G) is a direct product.



The significance of p(I") in these examples is that p(I") =
Centg(MNG)).

Definition: For N a regular subgroup of B, the opposite
group is N°PP = Centg(N).

Note: In some old papers this is called the conjoint.
(The opposite has a definition given in terms of the
elements of N but it coincides with Centg(IN) anyway.)

So for N regular one has

Normp(N) = NPPAut(N)
where Aut(N) = {h € Normpg(N) | h(er) = er}.



In fact, there is nothing terribly special about the con-
dition h(er) =er.
We may observe that for N < B regular that

NormB(N) — NOppA(%N)

where A, ny = {h € Normpg(N) | h(y) = ~} for any
vyel.

Indeed, all the A(%N) are conjugate, specifically WA(%N)W_l =
A(W(*}/),N) for any m € B.
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We observe the following symmetries of ( )9PP:

e NN NP = Z(N)

e If IV is semi-regular then N°PP s transitive.

e If IV is transitive then N°P js semi-regular.

e N is regular iff N°PP s reqgular

o (NOPP)OPP = N if N is (semi-)regular

e Normpg(IN) = Normpg(N°PP)



The last statement above is a consequence of the fol-
lowing:

Lemma:

Given a regular subgroup N of B, and its normalizer
Normg(N). If M is a normal regular subgroup of Normpg(IN)
then Normg(N) < Normg(M).

If |Aut(M)| = |Aut(N)| then Normpg(N) = Normpg(M).
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This leads to a different kind of symmetry between
regular subgroups N normalized by A(IM). In particular,
in this theorem N and M need not be isomorphic as
groups in order to have isomorphic holomorphs.
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A classic example of this phenomenon is the relation-
ship between the dihedral groups D5, and quaternionic
(dicyclic) groups @y of order 4n for n > 3:

1,0t =tz 1}

", ot =tz 1)}

Do, = {z,t| 2°" = 1,¢°
Qn = {z,t| 2" = 1, ¢°

and viewed as subgroups of Perm({z’,tz'}) they have a
common automorphism group:

Aut(Dop) = {d(; 4y | @ € Zop,j € U(Zop)}
= Zioy, X U(Zo,,) = HQZ(ZQn?
where ¢(i,j)(taxb) — ¢la ia+jb
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It was known by Burnside that in fact Hol(D»5,) =
Hol(Qn) and by viewing both as permutations on {z*, tz'}
we have that Hol(D»>,) = Hol(Qy) since one can show
that:

PQ(xb)¢(i,j) — PD(CUbW(i,j)
pQ(tx")b(; iy = pp(ta" T (it )

The upshot of this is that if A(I") normalizes a given
copy of D»,, then it normalizes its opposite as seen
above, and it also normalizes a copy of @Xn and its op-
posite.
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Other examples:

n = 40

{DQOaQIO}

{Cog x C2,C4 x D5}
n — 388

{Da4,Q20}

{Ca4 x C2,C4 x D11}

n = 156
{D7s,Q39}

{C3 x Q13,C6 x D13}
{C26 x D3,C13 X Q3}
{Co x ((C13 % C3) x(C2),(C13 xCyq) x C3}
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Decompositions

When ' = Cy x Cs where ged(r,s) = 1 then Aut(l") =
Aut(Cr) x Aut(Cs) and concordantly
Hol(I") = Hol(Cy) x Hol(Cy)

Similarly if [T nilpotent, expressed as a product of its
Sylow p-subgroups, then its holomorph is a direct prod-
uct of the holomorphs of each of these (characteristic)
subgroups.
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Other decompositions are possible.

If G is centerless then Fitting (using the Krull-Remak-
Schmidt theorem) showed that G is decomposable as a
product of distinct indecomposable normal subgroups
(up to order)

Gg(Gllx...xGlnl)x---X(GslX"'XGsns)

where the G;q,...G;,, are all isomorphic, and G;; Z Gy
unless ¢+ = k. Furthermore

Aut(G) = (Aut(G1) 1 Snq) X -+ X (Aut(Gs1) U Sny)

whence
Hol(G) 2 (Hol(G;1) 1Sny) X --+ x (Hol(Gg1) U Sny)
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Bear in mind that in these examples the component
groups are normal, semi-regular subgroups. So for a
given N < B regular with K < N then obviously K <
Normpg(N).

In fact, K is characteristic in N if and only if K «
Normpg(N).

To see this, realize that what Hol(N) represents is the
largest subgroup of B wherein automorphisms of N are
realized by conjugation.

(i.e. The distinction between Inner and Outer auto-
morphisms goes away.)
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Semi-Regular Subgroups and Wreath Products

The wreath products in the automorphisms (and holo-
morphs) seen earlier can be understood by looking at
the centralizers/normalizers of semi-regular subgroups.

We start with a classic example due to Burnside.

Let n = rs and consider the semi-regular cyclic sub-
group K =((1,2,...,8)---((r—=1)s+1,...,rs)) < 5.
We have

Centg (K) = Cs1 Sy
:(C3><"'><CS)><]S7’

where S, acts by coordinate shift on CY.
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and where each copy of Cs corresponds to a cycle

(G—1)s+1,...,75s)

in the generator of K and for (j—1)s+k € {1,...,n} one
applies an element o € S, to send it to (3'—1)s+k where
it is then acted on by a power of ((;' —1)s+1,...,75s).
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T his wreath product is a subgroup of a larger one within
Sn, namely the subgroup of S, consisting of those per-
mutations which preserve the supports (blocks)

My ={G-1s+1,...,js}
that is

(Perm(Mq) X --- x Perm(My)) xSy = S5 .Sy
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For this same K < S5, the normalizer is a 'twisted’
wreath product:

Normg, (K) = Cg x (A x Sy)

where A is isomorphic to Aut(Cs) acting by exponen-
tiating each s-cycle to the same unit, and S, still acts
by coordinate shift.

That is

G-Vs+k—= (G -1s+1,....57m)G" - 1)s + k)
for u € Us.
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For K < B a general semi-regular subgroup (not neces-
sarily cyclic) one has

Centg(K) = K Sy
Normpg(K) = K" x (Aut(K) x Sr)

where r = n/|K| and the analogues of the I; are the
orbits under the action of K.

As such, if KaN for some regular N then N < Normpg(K)
where the structure of this normalizer is as given above.

Moreover, K|n. is a regular subgroup of Perm(IT;).
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On a somewhat related note, the appearance of wreath
products in this discussion can be looked at as a con-
sequence of the following.

Universal Embedding Theorem [Kaloujnine-Krasner]

Given an exact sequence of groups

1o K—-N—-Q—1

expressing N as an extension of K by @ (split or not)
then one may find an isomorphic copy of N embedded
in K1Q.
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Now, if we view N as embedded as a regular subgroup
of B = Perm(X) with semi-regular subgroup K then
Centg(K) = K1 Sm where m = [N : K] = |Q)].

And thus, this S;, will contain a reqular subgroup iso-
morphic to Q.

But this K (@ centralizes K so any extension of K by
(Q contained herein would have to centralize K.

Well, if K < N then NP < Centg(K) and, of course
N = NO°PP,
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An interesting curio appears when looking again at the
dihedral groups D,.

Recall that
D, = {a:,t|  — 1,752 =1,xt = t:v_l}

and if Cp = (z) then A(Cyp) < A(Dp) is a semi-regular
subgroup.

Since A(x) is a product of two disjoint n-cycles then by
the above result:

Normg(A(Cp)) = (Cp x Cp) x (Up, x Sp)

where U, = (Zp)* & Aut(Cyp) so that, in particular
[Normp(A(Cn))| = 2n°¢(n)
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But now, since A(Cy) is characteristic in X(Djy) then
Normg(A(Dpn)) < Normpg(A(Chr)).

And since

Normg(A(Dp)) = Hol(Dyp)
= Dn X HOl(Cn)
= Dy x (Cp x Up)

then |[Normpg(Dy)| = 2n-n-¢(n) which is exactly |[Normpg(A(Ch))]
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As such, we have

Normg(A(Cr)) = Normpg(A(Dp))

so that any question about groups normalizing A(Dy)
can be examined by looking at whether they normalize
ACh).
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Thank youl!
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